This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Monomeric, Dimeric, and Trimeric Triselenometaphosphate

Konstantin Karaghiosoff; Michael Schuster

To cite this Article Karaghiosoff, Konstantin and Schuster, Michael (2001) 'Monomeric, Dimeric, and Trimeric Triselenometaphosphate', Phosphorus, Sulfur, and Silicon and the Related Elements, 168: 1, 117-122

To link to this Article: DOI: 10.1080/10426500108546540 URL: http://dx.doi.org/10.1080/10426500108546540

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Monomeric, Dimeric, and Trimeric Triselenometaphosphate

KONSTANTIN KARAGHIOSOFF and MICHAEL SCHUSTER

Department Chemie, Ludwig-Maximilians Universität München, Butenandtstr. 5–13 (Haus D), D-81377 München, Germany

Monomeric triselenometaphosphate PSe_3^- (1), its dimer (2) and trimer (3) are obtained for the first time in solution by oxidation of P_4Se_3 with M_2Se_2 (M = Li, Na) and elemental selenium and are fully characterized by ^{31}P and ^{77}Se NMR. The equilibrium between 1, 2 and 3 depends strongly on the solvent and is shifted to the side of PSe_3^- in HMPA or DMPU. Monomeric trithiometaphosphate PS_3^- (4) is obtained by the analogous reaction of $P_4Ss_3^-$ with Se_2^{2-} and elemental sulfur. 1 reacts with Se_2^{2-} and with P_4Se_3 to give the new selenophosphates $P_2Se_8^{4-}$ and $P_4Se_7^{2-}$, respectively. Further reaction of $P_4Se_7^{2-}$ with P_4Se_3 yields the new anion $P_0Se_{14}^{3-}$; its structure in the Bu_4P^+ salt is determined by X-ray crystallography.

Keywords: selenophosphates; triselenometaphosphate; trithiometaphosphate; ³¹P and ⁷⁷Se NMR; X-ray structure determination

The metaphosphate anions PO₃ and PS₃ are, in contrast to the nitrogen homologues NO₃ and NS₃, not stable as monomers and form rings or infinite chains (PCh₃)_n. (Ch = O, S). Monomeric PO₃ is described in the literature only as a reactive intermediate in solution and in the gas phase. Evidence for monomeric PS₃ in the solid state has been reported, however. [4]

Of the phosphorus chalcogen anions with the heavier chalcogens, only a few selenophosphates^[5] and no tellurophosphate are described in the literature. Most of the selenophosphates are known only in the solid

state. We find, that the oxidation of P_4Se_3 with an alkali metal diselenide M_2Se_2 (M=Li, Na) and grey selenium provides a general route to selenophosphates $P_nSe_m^{x^*}$ in solution. Reaction of the three components in a 1:2:5 molar ratio results in the formation of triselenometaphosphate PSe_3^{-1} (1) in equilibrium with its dimer $P_2Se_6^{2^*}$ (2) and trimer $P_3Se_9^{3^*}$ (3):

This equilibrium is strongly influenced by the solvent. Aprotic polar solvents like HMPA (hexamethyl phosphoric acid trisamide) or DMPU (dimethyl propylene urea), capable to coordinate to the alkali metal cations, shift the equilibrium to the side of monomeric PSe₃. The dimer 2 is observed only in DMPU in small amount (5%). In THF and acetonitrile the equilibrium is shifted mainly (70%) or completely to the side of the trimer 3. The structures of both 2 (with a diselenadiphosphetane ring) and 3 (with a triselenatriphosphinane ring) are analogous to those of the corresponding thiophosphates P₂S₆²⁻ and P₃S₉³⁻.

An alternative route to triselenometaphosphates is represented by the deselenation of P₂Se₈^{2-[6]} with tributylphosphane and demonstrates again the solvent dependency of the equilibrium between 1, 2 and 3. The first step yields regardless of the solvent used the new selenophosphate P₂Se₂² with a triselenadiphospholane ring. The product of the second step, depends on the solvent: in acetonitrile only the trimer 3 is observed while in HMPA only PSe₃ (1) is obtained.

Following the synthesis of PSe₃, monomeric trithiometaphosphate PS₃ (4) is obtained when P₄S₃ is oxidized with Li₂S₂ and elemental sulfur in DMPU as solvent:

$$P_4S_3 + 2 \text{ Li}_2S_2 + 5 \text{ S} \xrightarrow{DMPU} 4 \text{ S}^{S} P^{S} \text{ Li}^{+}$$

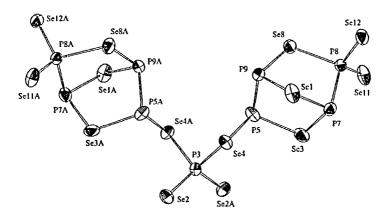
$$4 \text{ S}^{31}P = +300$$

Reaction of PSe₃ with PS₃ results in a Se/S-exchange at phosphorus and yields the thioselenometaphosphates PSe₂S and PSeS₂:

•	Se _{≈p} Se	s _{>p} , s + 1.	DMPU	Se _{>p} ≲Se	+	Se _{>p} S
	Se ⁻	S	1 h, 20 °C	S.		S.
$\delta^{31}P$	+212	+300		+245		+273
δ ⁷⁷ Se	+1252			+1101		+945
¹ J(Se,P) [H	z] (•)788			(-)811		(-)833

Characteristic for all four metaphosphate anions of the series PSe_{3-n}S_n (n = 0 - 3) is a ³¹P chemical shift at low field, comparable to that of the threecoordinate pentavalent phosphorus in diselenoxo- and dithioxophosphoranes RPCh₂ (Ch = S, Se, δ^{31} P = 213 - 296). Remarkable is the unusual 77Se chemical shift, which is found at extremely low field compared to that of phosphane selenides (δ^{77} Se = +149 to -497). The

values observed for ¹J(Se,P) are typical for a one-coordinate selenium atom bonded to phosphorus.


The acidity of the $\sigma^3 \lambda^5$ -phosphorus in PSe₃ is remarkably low for a phosphorus atom in this bonding situation. It nevertheless governs the reactivity of the anion. PSe₃ forms with pyridine and N-methyl imidazole 1:1 adducts; according to variable temperature ³¹P NMR studies in the case of the pyridine the equilibrium is shifted at ambient temperature almost completely to the side of free PSe₃ and in the case of the more basic N-methyl imidazole to the side of the adduct. Other nucleophiles like H, Bu and Se₂ also attack 1 at phosphorus and give the new selenophosphonate anions HPSe₃ and BuPSe₃ and the selenophosphate anion P₂Se₃ respectively:

Remarkable is the reaction of PSe₃ with P₄Se₃, which opens a route for the selective synthesis of polycyclic selenophosphates. It yields the new selenophosphate P₄Se₂² which is isolated as the Bu₄P⁺-salt. According

to the ^{31}P and ^{77}Se NMR spectra $P_4Se_7^{2-}$ has the heteronorbornane structure shown below, analogous to that of α - $P_4Se_3I_2$.

Reaction of P₄Se₇²⁻ with more P₄Se₃ results in the formation of the new selenophosphate anion P₉Se₁₄³⁻. It is isolated as the Bu₄P⁺ salt in form of orange red crystals.

According to the result of a single crystal X-ray structure determination the anion P₉Se₁₄³ consists of two heteronorbornane units, like those observed in *catena*-P₄Se₄ [7], which are bridged by a PSe₄ unit.

References

- A. Durif, in The Chemistry of Inorganic Homo- and Heterocycles, Vol. 2, Academic Press, London (1987), Chap. 22.
- [2] M. Evain, R. Brec, G. Ouvrard, J. Rouxel, Mater. Res. Bull. 19, 42 (1984).
- [3] M. Meisel, in Multiple Bonds and Low Coordination in Phosphorus Chemistry, M. Regitz, O.-J. Scherer eds., Thieme, Stuttgart, 1990, 415.
- [4] H.-W. Roesky, R. Ahlrichs, S. Brode, Angew. Chem. 98, 91 (1986); Angew. Chem. Int. Ed. Engl. 25, 82 (1986).
- [5] M. Kanatzidis, Solid State & Material Science 2, 139 (1997).
- [6] J. Zhao, W. T. Pennington, J. W. Kolis, J. Chem. Soc., Chem. Commun. 265 (1992).
- [7] M. Ruck, Z. Anorg. Allg. Chem. 620, 1832 (1994).